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In this technical note we present detailed derivations to accompany the co-
variance calculations for the Gaussian process (E

�
G (�0)G

�
�00
��
) that appears in

the limit distribution of Carter and Steigerwald (2011). We begin with the sin-
gle equation linear process with homoskedastic Gaussian errors and show that
E
�
G (�0)G

�
�00
��
is not a function of covariates (regressors). We then derive

the covariance for a multiple equation linear process, �rst with heteroskedastic
errors and second with homoskedastic errors.
For the single equation process we parallel the construction in the paper and

the calculations (in order) are: 1) construct the quasi-log-likelhood function Ln,
2) calculate the gradient, 3) calculate the information matrix I (�0), 4) calculate
the asymptotic variance of the score V (�0) and 5) calculate the covariance of
the score E

�
S (�0)S

�
�00
��
.

1 Single Equation

The process is
Yt = �0 + �St + Z

0
t� + Ut; (1)

with Ut � i:i:d:N (0; �). In what follows, we take Zt to be a scalar for conve-
nience.

1.1 Calculation of Ln
The quasi-log-likelihood for observation t is

ln
h
(1� �) 1p

c�
exp (yt��zt��0)

2

2� + � 1p
c�
exp (yt��zt��1)

2

2�

i
;

where c = 2 � pi. The resulting quasi-log-likelihood function, Ln (�; ; �0; �1)
where  = (�; �), is

nX
t=1

log

�
(1� �) exp

�
2�0 (yt � �zt)� �20

2�

�
+ � exp

�
2�1 (yt � �zt)� �21

2�

��
�n
2
log (c�)� 1

2�

nX
t=1

(yt � �zt)2 :
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1.2 Calculation of the Gradient of Ln
The gradient for the quasi-log-likelihood is1

@

@�
Ln (�; ; �0; �1) =

nX
t=1

exp
�
2�1(yt��zt)��21

2�

�
� exp

�
2�0(yt��zt)��20

2�

�
(1� �) exp

�
2�0(yt��zt)��20

2�

�
+ � exp

�
2�1(yt��zt)��21

2�

�
@

@�
Ln (�; ; �0; �1)

=
nX
t=1

��(2(yt��zt)�1��21)
2�2 exp

�
2�1(yt��zt)��21

2�

�
� (1��)(2(yt��zt)�0��20)

2�2 exp
�
2�0(yt��zt)��20

2�

�
(1� �) exp

�
2�0(yt��zt)��20

2�

�
+ � exp

�
2�1(yt��zt)��21

2�

�
� n

2�
+

1

2�2

nX
t=1

(yt � �zt)2 :

@

@�
Ln (�; ; �0; �1) =

nX
t=1

��(�1zt)
� exp

�
2�1(yt��zt)��21

2�

�
� (1��)(�0zt)

� exp
�
2�0(yt��zt)��20

2�

�
(1� �) exp

�
2�0(yt��zt)��20

2�

�
+ � exp

�
2�1(yt��zt)��21

2�

�
+
1

�

nX
t=1

wt (yt � �zt) :

@

@�1
Ln (�; ; �0; �1) =

nX
t=1

� (yt��zt��1)� exp
�
2�1(yt��zt)��21

2�

�
(1� �) exp

�
2�0(yt��zt)��20

2�

�
+ � exp

�
2�1(yt��zt)��21

2�

�
Evaluating the gradient at (1; ; �0; ��)
The evaluated gradient, which has expectation zero, contains

@

@�
Ln (1; ; �0; ��) =

nX
t=1

�
1� ebt

�
where bt = (yt � �zt)�

�
�0 � ��
�

�
�
�
�20 � �2�
2�

�
;

@

@�
Ln (1; ; �0; ��) =

nX
t=1

(yt � �zt � ��)2

2�2
� n

2�
;

@

@�
Ln (1; ; �0; ��) =

nX
t=1

zt (yt � �zt � ��)
�

;

@

@�1
Ln (1; ; �0; ��) =

nX
t=1

yt � �zt � ��
�

:

1 If the derivatives are taken at (0; ; ��; �1) then the derivative with respect to � changes
sign and the other derivatives are unchanged.
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Evaluating the Behavior of eb

In what follows, we drop the subscript t on (y; z) and use capital letters for
the random variables (Y; Z). For the information matrix calculations, we need
to know the behavior of four moments involving eb. We �rst calculate

E
�
eb
�
= E

h
e(Y��Z)�t�

1
2� (�

2
0��

2
�)
i
= E

h
e(Y��Z)�t

i
� e� 1

2� (�
2
0��

2
�)

where t =
�
�0���
�

�
. Under H0, (Y � �Z) � N (��; �). From the de�nition of

the moment generating function for a Gaussian random variable, for an arbitrary
real number t

E
h
e(Y��Z)�t

i
= e��t+

1
2�t

2

= exp

"
��

�
�0 � ��
�

�
+
1

2
�

�
�0 � ��
�

�2#

= exp

�
1

2�

�
�20 � �2�

��
:

Thus
E
�
eb
�
= 1:

We next calculate E
�
e2b
�
. Note

2b = (Y � �Z) � 2t� �
2
0 � �2�
�

;

and

E
�
e2b
�
= exp

�
�� � 2t+

1

2
� (2t)

2 � �
2
0 � �2�
�

�
= exp

�
1

�

�
2�0 (�0 � ��)� �20 + �2�

��
= exp

�
1

�
(�0 � ��)2

�
:

We next analyze

E
h
eb (Y � �Z � ��)2

i
=

Z
(y � �z � ��)2 ebce�

1
2� (y��z���)

2

dy;

where c = (2pi � �)�
1
2 . Note eb � e� 1

2� (y��z���)
2

has exponent

(y � �z)
�
�0 � ��
�

�
� 1
2

�20 � �2�
�

� 1

2�
(y � �z � ��)2

= � 1

2�
(y � �z � �0)2 :
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Further, (y � �z � ��)2 = (y � �z � �0)2+2 (�0 � ��) (y � �z � �0)+(�0 � ��)2.
Hence

E
h
eb (Y � �Z � ��)2

i
=

Z
(y � �z � �0)2 ce�

1
2� (y��z��0)

2

dy

+2 (�0 � ��)
Z
(y � �z � �0) ce�

1
2� (y��z��0)

2

dy

+(�0 � ��)2
Z
ce�

1
2� (y��z��0)

2

dy

= � + (�0 � ��)2 :

Finally, we analyze

E
�
eb (Y � �Z)

�
=

Z
(y � �z) ce� 1

2� (y��z��0)
2

dy

= �0:

1.3 Calculation of the Information Matrix I (�0)
The information matrix, I (�0) is226664

e
1
� (�0���)

2 � 1 � 1
2�2 (�0 � ��)

2 �EZ
� (�0 � ��) � 1

� (�0 � ��)
� 1

2�2 0 0

� � E[Z2]
�

E[Z]
�

� � � 1
�

37775
(1,1) Element

The (1,1) element of I (�0) corresponds to E
h�

@
@� lt

�2i
. We have

�
@

@�
lt

�2
= 1� 2eb + e2b:

Because E
�
eb
�
= 1 and E

�
e2b
�
= exp

h
1
� (�0 � ��)

2
i
:

E

"�
@

@�
lt

�2#
= exp

�
1

�
(�0 � ��)2

�
� 1:

(1,2) Element
The (1,2) element of I (�0) corresponds to E

��
@
@� lt

� �
@
@� lt

��
. We have�

@

@�
lt

��
@

@�
lt

�
=
�
1� eb

�
� 1
2�2

h
(Y � �Z � ��)2 � �

i
:

2 In Drew Carter�s notes, the (1,2) and (1,3) elements have a positive sign. This follows
from the fact the he evaluates derivatives at the point (0; ; ��; �1), which (as noted above)
changes the sign of the derivative with respect to �.
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Because E
h
(Y � �Z � ��)2

i
= �,

E
��

@

@�
lt

��
@

@�
lt

��
= � 1

2�2
E
h
eb
h
(Y � �Z � ��)2 � �

ii
:

Because E
�
eb
�
= 1 and E

h
eb (Y � �Z � ��)2

i
= � + (�0 � ��)2,

E
��

@

@�
lt

��
@

@�
lt

��
= � 1

2�2
(�0 � ��)2 :
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(1,3) Element

The (1,3) element of I (�0) corresponds to E
h�

@
@� lt

� �
@
@� lt

�i
. We have�

@

@�
lt

��
@

@�
lt

�
=
�
1� eb

�
� Z (Y � �Z � ��)

�
:

Because E (Y � �ZjZ) = ��

E
��

@

@�
lt

��
@

@�1
lt

��
= �E

�
eb � Z (Y � �Z � ��)

�

�
= �EZ

�
E
�
eb (Y � �Z)� eb��

�
:

Because E
�
eb
�
= 1 and E

�
eb (Y � �Z)

�
= �0,

E
��

@

@�
lt

��
@

@�
lt

��
= �EZ

�
(�0 � ��) :

(1,4) Element

The (1,4) element of I (�0) corresponds to E
h�

@
@� lt

� �
@
@�1
lt

�i
. We have�

@

@�
lt

��
@

@�1
lt

�
=
�
1� eb

�
� (Y � �Z � ��)

�
:

Because E (Y � �Z) = ��

E
��

@

@�
lt

��
@

@�1
lt

��
= �E

�
eb � (Y � �Z � ��)

�

�
= �1

�
E
�
eb (Y � �Z)� eb��

�
:

Because E
�
eb
�
= 1 and E

�
eb (Y � �Z)

�
= �0,

E
��

@

@�
lt

��
@

@�1
lt

��
= �1

�
(�0 � ��) :

(2,2) Element

The (2,2) element of I (�0) corresponds to E
h�

@
@� lt

�2i
. We have�

@

@�
lt

�2
=

1

4�4

n
(Y � �Z � ��)4 + �2 � 2 (Y � �Z � ��)2 �

o
:

Because E
h
(Y � �Z � ��)2

i
= �,

E

"�
@

@�
lt

�2#
=

1

4�4

n
E
h
(Y � �Z � ��)4

i
� �2

o
=

1

4�4
�
3�2 � �2

	
=

1

2�2
:
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(2,3) Element

The (2,3) element of I (�0) corresponds to E
h�

@
@� lt

� �
@
@� lt

�i
. We have�

@

@�
lt

��
@

@�
lt

�
=

1

2�2

n
(Y � �Z � ��)2 � �

o
� Z
�
(Y � �Z � ��)

=
1

2�3

n
Z (Y � �Z � ��)3 � Z (Y � �Z � ��) �

o
:

Because E
h
(Y � �Z � ��)3

i
= 0,

E
��

@

@�
lt

��
@

@�
lt

��
= 0:

(2,4) Element

The (2,4) element of I (�0) corresponds to E
h�

@
@� lt

� �
@
@�1
lt

�i
. We have�

@

@�
lt

��
@

@�1
lt

�
=

1

2�2

n
(Y � �Z � ��)2 � �

o
� 1
�
(Y � �Z � ��)

=
1

2�3

n
(Y � �Z � ��)3 � (Y � �Z � ��) �

o
:

Because E
h
(Y � �Z � ��)3

i
= 0,

E
��

@

@�
lt

��
@

@�1
lt

��
= 0:

(3,3) Element

The (3,3) element of I (�0) corresponds to E
��

@
@� lt

�2�
. We have

E

"�
@

@�
lt

�2#
= E

"
Z2
�
Y � �Z � ��

�

�2#

=
E
�
Z2
�

�
:

(3,4) Element

The (3,3) element of I (�0) corresponds to E
h�

@
@� lt

��
@
@�1
lt

�i
. We have

E
��

@

@�
lt

��
@

@�1
lt

��
= E

"
Z

�
Y � �Z � ��

�

�2#

=
E [Z]
�
:

(4,4) Element
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The (4,4) element of I (�0) corresponds to E
��

@
@�1
lt

�2�
. We have

E

"�
@

@�1
lt

�2#
= E

"�
Y � �Z � ��

�

�2#

=
1

�
:

1.4 Calculation of the Asymptotic Variance V (�0)
First

I2 =

264 2�2 0 0

� �
V ar(Z) � �E[Z]

V ar(Z)

� � �E[Z2]
V ar(Z)

375 :
Second, I1 (�0) I2 (�0) I1 (�0)T equals

h
� (�0���)2

2�2 �E[Z](�0���)
� � �0���

�

i
I2

264 � (�0���)2
2�2

�E[Z](�0���)
�

� �0���
�

375
=

(�0 � ��)2

�
+
(�0 � ��)4

2�2
:

Hence

V (�0) =
�
I11 (�0)� I1 (�0) I2 (�0) I1 (�0)T

��1
=

 
e
1
� (�0���)

2

� 1� (�0 � ��)
2

�
� (�0 � ��)

4

2�2

!�1
:

1.5 Calculation of E [S (�0)S (�00)]
Because E

�
S (�0)S

�
�00
��
is the (1,1) element of I

�
�00
��1 I ��0; �00� I (�0)�1, we

begin with I (�0)�1.

1.5.1 Calculation of I (�0)�1

The formula for I (�0)�1 comes from Harville (1997, p. 99). Recall

I (�0) =
�
I11 I1
IT1 I2

�

I (�0)�1 =
"
0 � � � 0
... I2

#
+

�
1

�I2IT1

�
V (�0)

�
1

�I2IT1

�T
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=

26664
0 0 0 0
� 2�2 0 0

� � �
V ar(Z) � �E[Z]

V ar(Z)

� � � �E[Z2]
V ar(Z)

37775+ V (�0)
2664
1 (�0 � ��)2 0 (�0 � ��)
� (�0 � ��)4 0 (�0 � ��)3
� � 0 0

� � � (�0 � ��)2

3775

= V (�0)

266664
1 (�0 � ��)2 0 (�0 � ��)
� 2�2 + (�0 � ��)4 0 (�0 � ��)3

� � �
V ar(Z) � �E[Z]

V ar(Z)

� � � �E[Z2](�0���)2

V ar(Z)

377775 :

1.5.2 Calculation of E
�
S (�0)S

�
�00
��

We have

I
�
�0; �

0
0

�
=

266664
e
1
� (�0���)(�

0
0���) � 1 � 1

2�2

�
�00 � ��

�2 �EZ
�

�
�00 � ��

�
� 1
�

�
�00 � ��

�
� (�0���)2

2�2
1
2�2 0 0

�EZ
� (�0 � ��) 0

E[Z2]
�

E[Z]
�

� �0���
� 0 E[Z]

�
1
�

377775 :
Hence E

�
S (�0)S

�
�00
��
equals

I11 (�0)
�
I11

�
�00
�
I11
�
�0; �

0
0

�
+ I12

�
�00
�
I21
�
�0; �

0
0

�
+ I13

�
�00
�
I31
�
�0; �

0
0

��
+I21 (�0)

�
I11

�
�00
�
I12
�
�0; �

0
0

�
+ I12

�
�00
�
I22
�
�0; �

0
0

�
+ I13

�
�00
�
I32
�
�0; �

0
0

��
+I31 (�0)

�
I11

�
�00
�
I13
�
�0; �

0
0

�
+ I12

�
�00
�
I23
�
�0; �

0
0

�
+ I13

�
�00
�
I33
�
�0; �

0
0

��
+I41 (�0)

�
I11

�
�00
�
I14
�
�0; �

0
0

�
+ I12

�
�00
�
I24
�
�0; �

0
0

�
+ I13

�
�00
�
I34
�
�0; �

0
0

��
;

which in turn equals

V (�0)V
�
�00
�
� (A+B + C +D) ;

where

A = I11
�
�0; �

0
0

�
+
�
�00 � ��

�2 I21 ��0; �00�+ 0 � I31 ��0; �00�+ ��00 � ��� I41 ��0; �00�
= e

1
� (�0���)(�

0
0���) � 1�

�
�00 � ��

�2 (�0 � ��)2
2�2

�
�
�00 � ��

�
(�0 � ��)
�

;

B = (�0 � ��)2
h
I12
�
�0; �

0
0

�
+
�
�00 � ��

�2 I22 ��0; �00�+ ��00 � ��� I42 ��0; �00�i
= (�0 � ��)2

"
�
�
�00 � ��

�2
2�2

+

�
�00 � ��

�2
2�2

#
= 0;

C = 0 �
h
I13
�
�0; �

0
0

�
+
�
�00 � ��

�2 I23 ��0; �00�+ ��00 � ��� I43 ��0; �00�i
= 0;
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D = (�0 � ��)
h
I14
�
�0; �

0
0

�
+
�
�00 � ��

�2 I24 ��0; �00�+ ��00 � ��� I34 ��0; �00�i
= (�0 � ��)

"
�
�
�00 � ��

�
�

+

�
�00 � ��

�
�

#
= 0:

1.5.3 Calculation of E
�
G (�0)G

�
�00
��

We have that E
�
G (�0)G

�
�00
��
equals

V (�0)
1
2 V
�
�00
� 1
2 � (A+B + C +D) :

If we note that the covariance is indexed by � = (�0���)p
�

and �0 = (�00���)p
�

, we
have �

e�
2

� 1� �2 � �
4

2

�� 1
2 h
e(�

0)
2

� 1� (�0)2 � (�0)4
i� 1

2 �

�e��
0
� 1� ��0 � �2 (�0)2 :

2 Multiple Equations

The general structure we consider is for n independent observations on a mul-
tivariate normal Yt = (Yt1; : : : ; Ytd)

0 with mean � 2 Rd and covariance matrix

�1. The density function is

f (Ytj�;
) = (2pi)
d
2 j
j

d
2 exp

�
�1
2
(Yt � �)T 
 (Yt � �)

�
;

The mixture arises from a second model with mean �+ �, so

f (Ytj�+ �;
)
f (Ytj�;
)

= exp

�
�T
 (Yt � �)�

1

2
�T
�

�
:

The covariance E [G (�1)G (�2)] is given byh
I�� (�1)� I�� (�1)T I�1�� I�� (�1)

i� 1
2
h
I�� (�2)� I�� (�2)T I�1�� I�� (�2)

i� 1
2 �(2)

�
"
E

 
f (Ytj�+ �1;
) f (Ytj�+ �2;
)

f (Ytj�;
)2

!
� 1� I�� (�1)T I�1�� I�� (�2)

#
:

2.1 Shifted Likelihood

The �rst term in the covariance that we calculate is the expected value of the
shifted likelihood

E

 
f (Ytj�+ �1;
) f (Ytj�+ �2;
)

f (Ytj�;
)2

!
� 1:
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We have

E

 
f (Ytj�+ �1;
) f (Ytj�+ �2;
)

f (Ytj�;
)2

!
= E exp

�
(�1 + �2)

T

 (Yt � �)�

1

2
�T1 
�1 �

1

2
�T2 
�2

�
= exp �T1 
�2:

Further,

I�� (�) = E
�
f (Ytj�+ �;
)
f (Ytj�;
)

�
� 1 = exp �T
� � 1:

2.2 Mean Information

The block diagonal structure of the information matrix leads to separation be-
tween information from the mean and information from the covariance. We
have

I�� (�) = E

 
f (Ytj�+ �;
)5� f (Ytj�;
)

f (Ytj�;
)2

!

= E�
�
5�f (Ytj�;
)
f (Ytj�;
)

�
= E�
 (Yt � �) = 
�:

and I�1�� = 
. Thus

I�� (�1)T I�1�� I�� (�2) = �T1 
�2:

2.3 Covariance Information

We have I�
 (�) consists of the matrix of components E� 5!jk log f (Ytj�;
).
Matrix di¤erentiation reveals

I�
 (�) =
1

2
��T:

For I

 we use the eigenvalue decomposition 
 = V DV T, where D is a diagonal
matrix with elements �i. Let � be a matrix with elements ij =

@�i
@�j
, then

I

 =
1

2
�D�2�T:

The actual values of the calculation depend on the parameterization of 
.
If


 =

�
�1 �

p
�1�2

�
p
�1�2 �2

�
;

then

I
�

(�1)

T I�1

I�
 (�2) =
1

2

�
�T1 
�2

�2
:
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If


 = �

�
1 �
� 1

�
;

then

I
�

(�1)

T I�1

I�
 (�2) =
1

2

�
�T1 
�2

�2
+

�
�21;1 � �21;2

� �
�22;1 � �22;2

�
4�2 (1� �2) ;

where �1;2 is the second element of �1.
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